
RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

NAME
rsyslog.conf − rsyslogd(8) configuration file

DESCRIPTION
The rsyslog.conf file is the main configuration file for thersyslogd(8) which logs system messages on *nix
systems. Thisfile specifies rules for logging.For special features see thersyslogd(8) manpage. Rsys-
log.conf is backward-compatible with sysklogd’s syslog.conf file. So if you migrate from sysklogd you can
rename it and it should work.

Note that this version of rsyslog ships with extensive documentation in html format. This is provided
in the ./doc subdirectory and probably in a separate package if you installed rsyslog via a packaging system.
To use rsyslog’s advanced features, youneed to look at the html documentation, because the man pages
only cover basic aspects of operation.

MODULES
Rsyslog has a modular design. Consequently, there is a growing number of modules. See the html docu-
mentation for their full description.

omsnmp
SNMP trap output module

omgssapi
Output module for GSS-enabled syslog

ommysql
Output module for MySQL

omrelp Output module for the reliable RELP protocol (prevents message loss).For details, see below at
imrelp and the html documentation. It can be used like this:

. :omrelp:server:port

. :omrelp:192.168.0.1:2514# actual sample

ompgsql
Output module for PostgreSQL

omlibdbi
Generic database output module (Firebird/Interbase, MS SQL, Sybase, SQLite, Ingres, Oracle,
mSQL)

imfile Input module for text files

imudp Input plugin for UDP syslog. Replaces the deprecated -r option. Can be used like this:

$ModLoad imudp

$UDPServerRun 514

imtcp Input plugin for plain TCP syslog. Replaces the deprecated -t option. Can be used like this:

$ModLoad imtcp

$InputTCPServerRun 514

imrelp Input plugin for the RELP protocol. RELP can be used instead of UDP or plain TCP sys-
log to provide reliable delivery of syslog messages. Please note that plain TCP syslog
does NOT provide truly reliable delivery, with it messages may be lost when there is a
connection problem or the server shuts down. RELP prevents message loss in those
cases. Itcan be used like this:

Version 7.2.0 22 October 2012 1

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

$ModLoad imrelp

$InputRELPServerRun 2514

imgssapi
Input plugin for plain TCP and GSS-enable syslog

immark
Support for mark messages

imklog Kernel logging. To include kernel log messages, you need to do

$ModLoad imklog

Please note that the klogd daemon is no longer necessary and consequently no longer pro-
vided by the rsyslog package.

imuxsock
Unix sockets, including the system log socket. You need to specify

$ModLoad imuxsock

in order to receive log messages from local system processes. This config directive should
only left out if you know exactly what you are doing.

BASIC STRUCTURE
Lines starting with a hash mark (’#’) and empty lines are ignored.Rsyslog.conf should contain
following sections (sorted by recommended order in file):

Global directives
Global directives set some global properties of whole rsyslog daemon, for example size
of main message queue ($MainMessageQueueSize), loading external modules ($Mod-
Load) and so on. All global directives need to be specified on a line by their own and
must start with a dollar-sign. The complete list of global directives can be found in html
documentation in doc directory or online on web pages.

Templates
Templates allow you to specify format of the logged message. They are also used for
dynamic file name generation. They hav eto be defined before they are used in rules. For
more info about templates see TEMPLATES section of this manpage.

Output channels
Output channels provide an umbrella for any type of output that the user might want.
They hav eto be defined before they are used in rules. For more info about output chan-
nels see OUTPUT CHANNELS section of this manpage.

Rules (selector + action)
Every rule line consists of two fields, a selector field and an action field. These two fields
are separated by one or more spaces or tabs. The selector field specifies a pattern of facili-
ties and priorities belonging to the specified action.

SELECTORS
The selector field itself again consists of two parts, a facility and a priority, separated by a period
(’.’). Both parts are case insensitive and can also be specified as decimal numbers, but don’t do
that, you have been warned. Bothfacilities and priorities are described in syslog(3). The names

Version 7.2.0 22 October 2012 2

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

mentioned below correspond to the similar LOG_-values in /usr/include/syslog.h.

The facility is one of the following keywords: auth, authpriv, cron, daemon, kern, lpr, mail, mark,
news, security (same as auth), syslog, user, uucp and local0 through local7. The keyword security
should not be used anymore and mark is only for internal use and therefore should not be used in
applications. Anyway, you may want to specify and redirect these messages here. The facility
specifies the subsystem that produced the message, i.e. all mail programs log with the mail facility
(LOG_MAIL) if they log using syslog.

The priority is one of the following keywords, in ascending order: debug, info, notice, warning,
warn (same as warning), err, error (same as err), crit, alert, emerg, panic (same as emerg). The key-
words error, warn and panic are deprecated and should not be used anymore. The priority defines
the severity of the message.

The behavior of the original BSD syslogd is that all messages of the specified priority and higher
are logged according to the given action. Rsyslogd behaves the same, but has some extensions.

In addition to the above mentioned names the rsyslogd(8) understands the following extensions:
An asterisk (’*’) stands for all facilities or all priorities, depending on where it is used (before or
after the period). The keyword none stands for no priority of the given facility.

You can specify multiple facilities with the same priority pattern in one statement using the
comma (’,’) operator. You may specify as much facilities as you want. Remember that only the
facility part from such a statement is taken, a priority part would be skipped.

Multiple selectors may be specified for a single action using the semicolon (’;’) separator. Remem-
ber that each selector in the selector field is capable to overwrite the preceding ones. Using this
behavior you can exclude some priorities from the pattern.

Rsyslogd has a syntax extension to the original BSD source, that makes its use more intuitively.
You may precede every priority with an equals sign (’=’) to specify only this single priority and
not any of the above. You may also (both is valid, too) precede the priority with an exclamation
mark (’!’) to ignore all that priorities, either exact this one or this and any higher priority. If you
use both extensions than the exclamation mark must occur before the equals sign, just use it intu-
itively.

ACTIONS
The action field of a rule describes what to do with the message. In general, message content is
written to a kind of "logfile". But also other actions might be done, like writing to a database table
or forwarding to another host.

Regular file
Typically messages are logged to real files. The file has to be specified with full pathname, begin-
ning with a slash (’/’).

Example:
. /v ar/log/traditionalfile.log;RSYSLOG_TraditionalFileFormat # log to a file in
the traditional format

Note: if you would like to use high-precision timestamps in your log files, just remove the
";RSYSLOG_TraditionalFormat". That will select the default template, which, if not changed,
uses RFC 3339 timestamps.

Example:

Version 7.2.0 22 October 2012 3

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

. /v ar/log/file.log # log to a file with RFC3339 timestamps

Named pipes
This version of rsyslogd(8) has support for logging output to named pipes (fifos). A fifo or named
pipe can be used as a destination for log messages by prepending a pipe symbol (’|’) to the name
of the file. This is handy for debugging. Note that the fifo must be created with the mkfifo(1) com-
mand before rsyslogd(8) is started.

Terminal and console
If the file you specified is a tty, special tty-handling is done, same with /dev/console.

Remote machine
There are three ways to forward message: the traditional UDP transport, which is extremely lossy
but standard, the plain TCP based transport which loses messages only during certain situations
but is widely available and the RELP transport which does not lose messages but is currently avail-
able only as part of rsyslogd 3.15.0 and above.

To forward messages to another host via UDP, prepend the hostname with the at sign ("@").To
forward it via plain tcp, prepend two at signs ("@@"). To forward via RELP, prepend the string
":omrelp:" in front of the hostname.

Example:
. @192.168.0.1

In the example above, messages are forwarded via UDP to the machine 192.168.0.1, the destina-
tion port defaults to 514. Due to the nature of UDP, you will probably lose some messages in tran-
sit. If you expect high traffic volume, you can expect to lose a quite noticeable number of mes-
sages (the higher the traffic, the more likely and severe is message loss).

If you would lik e to pre vent message loss, use RELP:
. :omrelp:192.168.0.1:2514

Note that a port number was given as there is no standard port for relp.

Keep in mind that you need to load the correct input and output plugins (see "Modules" above).

Please note that rsyslogd offers a variety of options in regarding to remote forwarding. For full
details, please see the html documentation.

List of users
Usually critical messages are also directed to ‘‘root’’ on that machine. You can specify a list of
users that shall get the message by simply writing ":omusrmsg:" followed by the login name. You
may specify more than one user by separating them with commas (’,’). If they’re logged in they get
the message (for example: ":omusrmsg:root,user1,user2").

Everyone logged on
Emergency messages often go to all users currently online to notify them that something strange is
happening with the system. To specify this wall(1)-feature use an ":omusrmsg:*".

Database table
This allows logging of the message to a database table.By default, a MonitorWare-compatible
schema is required for this to work. You can create that schema with the createDB.SQL file that

Version 7.2.0 22 October 2012 4

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

came with the rsyslog package. You can also use any other schema of your liking - you just need
to define a proper template and assign this template to the action.

See the html documentation for further details on database logging.

Discard
If the discard action is carried out, the received message is immediately discarded. Discard can be
highly effective if you want to filter out some annoying messages that otherwise would fill your
log files. To do that, place the discard actions early in your log files. This often plays well with
property-based filters, giving you great freedom in specifying what you do not want.

Discard is just the single tilde character with no further parameters.

Example:
. ˜ # discards everything.

Output channel
Binds an output channel definition (see there for details) to this action. Output channel actions
must start with a $-sign, e.g. if you would like to bind your output channel definition "mychannel"
to the action, use "$mychannel". Output channels support template definitions like all all other
actions.

Shell execute
This executes a program in a subshell. The program is passed the template-generated message as
the only command line parameter. Rsyslog waits until the program terminates and only then con-
tinues to run.

Example:
ˆprogram-to-execute;template

The program-to-execute can be any valid executable. It receives the template string as a single
parameter (argv[1]).

FILTER CONDITIONS
Rsyslog offers three different types "filter conditions":

* " traditional" severity and facility based selectors
* property-based filters
* expression-based filters

Selectors
Selectors are the traditional way of filtering syslog messages.They hav ebeen kept in rsyslog
with their original syntax, because it is well-known, highly effective and also needed for compati-
bility with stock syslogd configuration files. If you just need to filter based on priority and facility,
you should do this with selector lines. They are not second-class citizens in rsyslog and offer the
best performance for this job.

Property-Based Filters
Property-based filters are unique to rsyslogd. They allow to filter on any property, like HOST-
NAME, syslogtag and msg.

A property-based filter must start with a colon in column 0. This tells rsyslogd that it is the new

Version 7.2.0 22 October 2012 5

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

filter type. The colon must be followed by the property name, a comma, the name of the compare
operation to carry out, another comma and then the value to compare against. This value must be
quoted. Therecan be spaces and tabs between the commas. Property names and compare opera-
tions are case-sensitive, so "msg" works, while "MSG" is an invalid property name. In brief, the
syntax is as follows:

:property, [!]compare-operation, "value"

The following compare-operations are currently supported:

contains
Checks if the string provided in value is contained in the property

isequal
Compares the "value" string provided and the property contents. These two val-
ues must be exactly equal to match.

startswith
Checks if the value is found exactly at the beginning of the property value

regex
Compares the property against the provided regular expression.

Expression-Based Filters
See the html documentation for this feature.

TEMPLATES
Every output in rsyslog uses templates - this holds true for files, user messages and so on. Tem-
plates compatible with the stock syslogd formats are hardcoded into rsyslogd. If no template is
specified, we use one of these hardcoded templates. Search for "template_" in syslogd.c and you
will find the hardcoded ones.

A template consists of a template directive, a name, the actual template text and optional options.
A sample is:

$template MyTemplateName,"\7Text %property% some more text\n",<options>

The "$template" is the template directive. It tells rsyslog that this line contains a template. The
backslash is an escape character. For example, \7 rings the bell (this is an ASCII value), \n is a new
line. The set in rsyslog is a bit restricted currently.

All text in the template is used literally, except for things within percent signs. These are proper-
ties and allow you access to the contents of the syslog message. Properties are accessed via the
property replacer and it can for example pick a substring or do date-specific formatting. More on
this is the PROPERTY REPLACER section of this manpage.

To escape:
% = \%
\ = \\ --> ’\’ is used to escape (as in C)

$template TraditionalFormat,"%timegenerated% %HOSTNAME% %syslogtag%%msg%\n"

Properties can be accessed by the property replacer (see there for details).

Version 7.2.0 22 October 2012 6

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

Please note that templates can also by used to generate selector lines with dynamic file
names. For example, if you would like to split syslog messages from different hosts to different
files (one per host), you can define the following template:

$template DynFile,"/var/log/system-%HOSTNAME%.log"

This template can then be used when defining an output selector line. It will result in something
like "/var/log/system-localhost.log"

Template options
The <options> part is optional. It carries options influencing the template as whole.See details
below. Be sure NOT to mistake template options with property options - the later ones are pro-
cessed by the property replacer and apply to a SINGLE property, only (and not the whole tem-
plate).

Template options are case-insensitive. Currently defined are:

sql format the string suitable for a SQL statement in MySQL format. This will
replace single quotes ("’") and the backslash character by their backslash-
escaped counterpart ("´" and "\") inside each field. Please note that in MySQL
configuration, the NO_BACKSLASH_ESCAPES mode must be turned off for
this format to work (this is the default).

stdsql format the string suitable for a SQL statement that is to be sent to a standards-
compliant sql server. This will replace single quotes ("’") by two single quotes
("’ ’") inside each field.You must use stdsql together with MySQL if in MySQL
configuration the NO_BACKSLASH_ESCAPES is turned on.

Either thesql or stdsql option MUST be specified when a template is used for writing to a data-
base, otherwise injection might occur. Please note that due to the unfortunate fact that several ven-
dors have violated the sql standard and introduced their own escape methods, it is impossible to
have a single option doing all the work. Soyou yourself must make sure you are using the right
format. If you choose the wrong one, you are still vulnerable to sql injection.

Please note that the database writer *checks* that the sql option is present in the template. If it is
not present, the write database action is disabled. This is to guard you against accidental forget-
ting it and then becoming vulnerable to SQL injection. The sql option can also be useful with files
- especially if you want to import them into a database on another machine for performance rea-
sons. However, do NOT use it if you do not have a real need for it - among others, it takes some
toll on the processing time. Not much, but on a really busy system you might notice it ;)

The default template for the write to database action has the sql option set.

Template examples
Please note that the samples are split across multiple lines. A template MUST NOT actually be
split across multiple lines.

A template that resembles traditional syslogd file output:

$template TraditionalFormat,"%timegenerated% %HOSTNAME%
%syslogtag%%msg:::drop-last-lf%\n"

A template that tells you a little more about the message:

Version 7.2.0 22 October 2012 7

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

$template precise,"%syslogpriority%,%syslogfacility%,%timegenerated%,%HOST-
NAME%,
%syslogtag%,%msg%\n"

A template for RFC 3164 format:

$template RFC3164fmt,"<%PRI%>%TIMESTAMP% %HOSTNAME% %syslog-
tag%%msg%"

A template for the format traditionally used for user messages:

$template usermsg," XXXX%syslogtag%%msg%\n\r"

And a template with the traditional wall-message format:

$template wallmsg,"\r\n\7Message from syslogd@%HOSTNAME% at %timegener-
ated%"

A template that can be used for writing to a database (please note the SQL template option)

$template MySQLInsert,"insert iut, message, receivedat values (’%iut%’,
’%msg:::UPPERCASE%’, ’%timegenerated:::date-mysql%’) into systemevents\r\n",
SQL

NOTE 1: This template is embedded into core application under nameStdDBFmt , so
you don’t need to define it.

NOTE 2: You have to hav eMySQL module installed to use this template.

OUTPUT CHANNELS
Output Channels are a new concept first introduced in rsyslog 0.9.0. As of this writing, it is most
likely that they will be replaced by something different in the future. So if you use them, be pre-
pared to change you configuration file syntax when you upgrade to a later release.

Output channels are defined via an $outchannel directive. It’s syntax is as follows:

$outchannel name,file-name,max-size,action-on-max-size

name is the name of the output channel (not the file), file-name is the file name to be written to,
max-size the maximum allowed size and action-on-max-size a command to be issued when the
max size is reached. This command always has exactly one parameter. The binary is that part of
action-on-max-size before the first space, its parameter is everything behind that space.

Keep in mind that $outchannel just defines a channel with "name". It does not activate it. To do
so, you must use a selector line (see below). That selector line includes the channel name plus
":omfile:$" in front of it. A sample might be:

. :omfile:$mychannel

PROPERTY REPLACER
The property replacer is a core component in rsyslogd’s output system. A syslog message has a
number of well-defined properties (see below). Each of this properties can be accessed and manip-
ulated by the property replacer. With it, it is easy to use only part of a property value or manipulate
the value, e.g. by converting all characters to lower case.

Version 7.2.0 22 October 2012 8

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

Accessing Properties
Syslog message properties are used inside templates. They are accessed by putting them between
percent signs. Properties can be modified by the property replacer. The full syntax is as follows:

%propname:fromChar:toChar:options%

propname is the name of the property to access.It is case-sensitive.

Av ailable Properties
msg the MSG part of the message (aka "the message" ;))

rawmsg
the message exactly as it was received from the socket. Should be useful for debugging.

HOSTNAME
hostname from the message

FROMHOST
hostname of the system the message was received from (in a relay chain, this is the sys-
tem immediately in front of us and not necessarily the original sender)

syslogtag
TA G from the message

programname
the "static" part of the tag, as defined by BSD syslogd. For example, when TAG is
"named[12345]", programname is "named".

PRI PRI part of the message - undecoded (single value)

PRI-text
the PRI part of the message in a textual form (e.g. "syslog.info")

IUT the monitorware InfoUnitType - used when talking to a MonitorWare backend (also for
phpLogCon)

syslogfacility
the facility from the message - in numerical form

syslogfacility-text
the facility from the message - in text form

syslogseverity
severity from the message - in numerical form

syslogseverity-text
severity from the message - in text form

timegenerated
timestamp when the message was RECEIVED. Always in high resolution

timereported
timestamp from the message. Resolution depends on what was provided in the message
(in most cases, only seconds)

TIMESTAMP
alias for timereported

PROT OCOL-VERSION
The contents of the PROT OCOL-VERSION field from IETF draft draft-ietf-syslog-proto-
col

Version 7.2.0 22 October 2012 9

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

STRUCTURED-DAT A
The contents of the STRUCTURED-DAT A field from IETF draft draft-ietf-syslog-proto-
col

APP-NAME
The contents of the APP-NAME field from IETF draft draft-ietf-syslog-protocol

PROCID
The contents of the PROCID field from IETF draft draft-ietf-syslog-protocol

MSGID
The contents of the MSGID field from IETF draft draft-ietf-syslog-protocol

$NOW The current date stamp in the format YYYY-MM-DD

$YEAR
The current year (4-digit)

$MONTH
The current month (2-digit)

$DAY The current day of the month (2-digit)

$HOUR
The current hour in military (24 hour) time (2-digit)

$MINUTE
The current minute (2-digit)

Properties starting with a $-sign are so-called system properties. These do NOT stem from the
message but are rather internally-generated.

Character Positions
FromChar and toChar are used to build substrings. They specify the offset within the string that
should be copied. Offset counting starts at 1, so if you need to obtain the first 2 characters of the
message text, you can use this syntax: "%msg:1:2%". If you do not wish to specify from and to,
but you want to specify options, you still need to include the colons. For example, if you would
like to convert the full message text to lower case, use "%msg:::lowercase%". If you would like to
extract from a position until the end of the string, you can place a dollar-sign ("$") in toChar (e.g.
%msg:10:$%, which will extract from position 10 to the end of the string).

There is also support forregular expressions.To use them, you need to place a "R" into From-
Char. This tells rsyslog that a regular expression instead of position-based extraction is desired.
The actual regular expressionmust then be provided in toChar. The regular expression must be
followed by the string "--end". It denotes the end of the regular expression and will not become
part of it. If you are using regular expressions, the property replacer will return the part of the
property text that matches the regular expression. An example for a property replacer sequence
with a regular expression is: "%msg:R:.*Sev:. \(.*\) \[.*--end%"

Also, extraction can be done based on so-called "fields". To do so, place a "F" into FromChar. A
field in its current definition is anything that is delimited by a delimiter character. The delimiter by
default is TAB (US-ASCII value 9). However, if can be changed to any other US-ASCII character
by specifying a comma and the decimal US-ASCII value of the delimiter immediately after the
"F". For example, to use comma (",") as a delimiter, use this field specifier: "F,44". If your syslog
data is delimited, this is a quicker way to extract than via regular expressions (actually, a *much*
quicker way). Field counting starts at 1. Field zero is accepted, but will always lead to a "field not
found" error. The same happens if a field number higher than the number of fields in the property
is requested. The field number must be placed in the "ToChar" parameter. An example where the
3rd field (delimited by TAB) from the msg property is extracted is as follows: "%msg:F:3%". The

Version 7.2.0 22 October 2012 10

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

same example with semicolon as delimiter is "%msg:F,59:3%".

Please note that the special characters "F" and "R" are case-sensitive. Only upper case works,
lower case will return an error. There are no white spaces permitted inside the sequence (that will
lead to error messages and will NOT provide the intended result).

Property Options
Property options are case-insensitive. Currently, the following options are defined:

uppercase
convert property to lowercase only

lowercase
convert property text to uppercase only

drop-last-lf
The last LF in the message (if any), is dropped. Especially useful for PIX.

date-mysql
format as mysql date

date-rfc3164
format as RFC 3164 date

date-rfc3339
format as RFC 3339 date

escape-cc
replace control characters (ASCII value 127 and values less then 32) with an escape
sequence. The sequence is "#<charval>" where charval is the 3-digit decimal value of the
control character. For example, a tabulator would be replaced by "#009".

space-cc
replace control characters by spaces

drop-cc drop control characters - the resulting string will neither contain control characters,
escape sequences nor any other replacement character like space.

QUEUED OPERATIONS
Rsyslogd supports queued operations to handle offline outputs (like remote syslogd’s or database
servers being down). When running in queued mode, rsyslogd buffers messages to memory and
optionally to disk (on an as-needed basis). Queues survive rsyslogd restarts.

It is highly suggested to use remote forwarding and database writing in queued mode, only.

To learn more about queued operations, see the html documentation.

FILES
/etc/rsyslog.conf

Configuration file forrsyslogd

SEE ALSO
rsyslogd(8), logger(1), syslog(3)

The complete documentation can be found in the doc folder of the rsyslog distribution or online at

http://www.rsyslog.com/doc

Please note that the man page reflects only a subset of the configuration options. Be sure to read

Version 7.2.0 22 October 2012 11

RSYSLOG.CONF(5) LinuxSystem Administration RSYSLOG.CONF(5)

the html documentation for all features and details. This is especially vital if you plan to set up a
more-then-extremely-simple system.

AUTHORS
rsyslogd is taken from sysklogd sources, which have been heavily modified by Rainer Gerhards
(rgerhards@adiscon.com) and others.

Version 7.2.0 22 October 2012 12

